
A. Notation

For a graph G we write V (G) and E(G) for its vertex and edge set,
respectively. For a vertex v œ V (G), we write N(v) to denote its
neighborhood, i.e. the set containing all vertices that are adjacent
to it in G. We further write G ≠ v for the graph obtained from G

by removing v and all edges incident to it.
For a directed graph (digraph) G̨, we use N

≠(v) to denote the
in-neighborhood of v œ V (G̨), that is, the set of all vertices w for
which an arc wv exists in G̨. The size of that in-neighbourhood
is called the in-degree of v. We write �≠(G̨) for the maximum
in-degree over all vertices of G̨. For ease of notation, we usually
write “v œ G” instead of “v œ V (G)” and “uv œ G” instead of
“{u, v} œ E(G)” (same for digraphs).

A vertex set S ™ V (G) is r-scattered if all vertices in it have
pairwise distance at least r in G. Note that if a set S is (2r + 1)-
scattered in G, then no single vertex can r-dominate more than
one vertex of S. It follows that any r-dominating set of G must
have size at least |S|; we can therefore use (2r + 1)-scattered sets
to prove lower bounds on the r-domination number of a graph.

B. Dtf-augmentation
For the sake of completeness, we briefly describe how dtf-
augmentations G̨1, G̨2, . . . , G̨r are computed for an input graph
G.

First, the graph G̨1 is a minimum in-degree orientation of G

obtained as follows: we find a vertex u of minimum degree in G,
orient the incident edges towards u and the repeat the procedure in
G ≠ u until no vertices remain.

Given G̨i, i Ø 1 we then compute G̨i+1 by applying an augmen-
tation step:

1. G̨i+1 contains all arcs of G̨i,

2. if there is a pair of arcs uv œ G̨j and vw œ G̨k with j+k = i+1,
then we add uw to G̨i+1,

3. if there is a pair of arcs uv œ G̨j and wv œ G̨k with j+k = i+1,
then either the arc uw or the arc wu must be in G̨i+1.

The ambiguity in the last step is resolved as follows: we collect all
edges uw for which the last case applies in a graph H and then
compute a minimum in-degree orientation H̨ of H. We then add
the arcs in H̨ to G̨i+1.

For ease of notation, we define Ê(uv) to be the smallest index
i Æ r such that uv œ G̨i (and Œ if no such index exists). We make
use of two crucial properties of dtf augmentations in the following.
First, vertices that have distance at most r in G have distance at
most two in G̨r:

Lemma 1 (c.f. Lemma 26 in (24)). For every pair u, v œ G with
dist(u, v) = d and for every integer r Ø d one of the following holds:

1. uv œ G̨r and Ê(uv) = d,

2. vu œ G̨r and Ê(vu) = d,

3. or there exists x such that xu, xv œ G̨r and Ê(xu)+Ê(xv) = d.

Second, if we compute dtf-augmentations of graphs from a bounded
expansion class (to which graphs of bounded maximum degree like
cDBGs belong), then the maximum in-degree of its rth augmenta-
tion can be bounded by a function independent of the size of the
graph:

Theorem 1 (c.f. Theorem 16 in (24)). For every graph class G
with bounded expansion there exists a function f such that for every
member G œ G the rth dtf-augmentation G̨r computed as above
satisfies �≠(G̨r) Æ f(r).

C. Approximation guarantee
Let us introduce some notation for the analysis of Algorithm 1.
We first partition the vertices of D according to whether they
were added in line 10 (denoted by D1) or in line 15 (denoted

by D2). Let v1, . . . , vn be the vertex- order in which they are iterated
over in the loop starting at line 6. We will use the notation D

i

1,
D

i

2, d
i, and c

i to represent the states of the respective sets and
data structures during the ith iteration of said loop. Let · :=
domThreshold(r) be the chosen threshold (we discuss a good value
for · on cDBGs below).

Lemma 2. After the for-loop at line 7 has finished,

d
i[vi] =

;
distG(v, D

i) if distG(v, D
i) Æ r, and

Œ otherwise.

Proof. The statement trivially holds while D
i = ÿ, so assume

otherwise. Let uh œ D
i be the vertex closest to vi and let h < i

be the iteration in which uh was added to D (either in line 10 or
line 15 of that iteration).

If d := distG(vi, uh) > r, then d
i[vi] has not been changed yet

and is still set to Œ. Otherwise, consider the three possible scenarios
promised by the distance-property of dtf-augmentations:

Case 1: viuh œ G̨d. Then Ê(viuh) = d and in iteration h

the value of d
h[vi] is set to the correct value d at line 8. By

assumption this distance remains minimal until iteration i and
hence d

i[vi] = d
h[vi] = d.

Case 2: uhvi œ G̨d. Then Ê(viuh) = d and in iteration i the
value of d

i[vi] is set to the correct value d at line 8.

Case 3: xuh, xvi œ G̨d with Ê(xuh) + Ê(xvi) = d.
During iteration h the value of d

h[x] is set to Ê(xuh) at line 8 and
subsequently retrieved in iteration i when d

i[vi] is set to

d
i[x] + Ê(xuh) = Ê(xuh) + Ê(xvi) = d.

We conclude that after the execution of the loop at line 8. d
i[vi]

is set to Œ if vi is not dominated by Di and is otherwise set
to distG(vi, D

i), as claimed.

As an immediate consequence, we see the conditional statement at
the end of the loop at line 8 accurately determines whether vi is
dominated by Di or not. Accordingly, line 15 of the loop is only
executed if vi is not dominated by D

i. Another consequence is that
all vertices in D1 have large distance to each other:

Corollary 1. The set D1 is (r + 1)-scattered in G.
We need one more important property of the algorithm in order to
derive the approximation factor.

Lemma 3. For every w œ G it holds that |D1 fl N
≠
r (w)| Æ · + 1.

Proof. Assume towards a contradiction that · + 2 such vertices
vi1 , . . . , vi· +2, i1 < i2 < . . . < i·+2 exist in D1 fl N

≠
r (w). Since

every such vertex vi, i œ {i1, . . . i·+2}, was added to D in part (2),
part (3) of the algorithm was executed during iteration i as well.
Thus c[w] was increased in each iteration i and during iteration i·+1
we have that c[w] Ø · + 1 after the increment of c[w]. There-
fore part (4) must have been executed for w, including w into D.
Hence w œ D

s for s > i·+1 and in particular w œ D
i·+2 . But

then vi·+2 was dominated by w at the beginning of iteration i·+2
since we assumed that Ê(rvi·+2) Æ r, thus vi·+2 would not have
been included in D at step (2). This contradicts our assumption of
vi·+2 œ D1 so the claim must hold.

Lemma 4. There exists a subset A ™ D1 such that A is (2r + 1)-
scattered in G and

|A| Ø
|D|

2(· + 2)�≠(G̨2r))�≠(G̨r)
.

Proof. We construct an auxiliary graph H with vertices D1 by
adding arcs vivj for vi, vj œ D1 with i < j whenever distG(vi, vj) Æ
2r. Let G̨2r be a 2rth dtf-augmentation of G and let us create a
digraph H̨ by orienting every edge uv œ H as follows:

1. If of uv, vu œ G̨2r, then orient uv in H̨ according to the
corresponding arc in G̨2r (if both arcs exists choose an arbitrary
orientation),

10

2. otherwise there exists w œ N
≠
2r

(u) fl N
≠
2r

(v) with Ê2r(u) +
Ê2r(v) = distG(u, v) Æ 2r. Orient the edge uv towards that
vertex x œ {u, v} for which Ê2r(x) is larger.

We now argue that �≠(H̨) is small. Consider any vertex v œ H̨.
Every in-arc uv œ H̨ either is of type 1, of which we have at
most �≠(G̨2r), or of type 2. Consider a group of in- arcs uiv,
1 Æ i Æ ¸ of type 2 that are all present because of a common
vertex w. Since w œ N

≠
2r

(u), we have at most �≠(G̨2r) such groups.
By construction, Ê2r(wui) Æ Ê2r(wv) and since both weights sum
to less than 2r, this means that Ê2r(wui) Æ r. Lemma 3 now tells
us that ¸ Æ · + 1. Therefore v has at most (· + 1)�≠(G̨2r) in-arcs
of type 2, and we conclude that

�≠(H̨) Æ �≠(G̨2r) + (· + 1)�≠(G̨2r) = (· + 2)�≠(G̨2r).

This finally implies that H is 2(· + 2)�≠(G̨2r)-degenerate and
therefore contains an independent set A ™ V (H) of size at
least |A| Ø |H|/(2(· + 2)�≠(G̨2r)). Taken together with the fact
that |H| = |D1| Ø |D|/�≠(G̨r) (every vertex added to D1 will
cause at most �≠(G̨r) many vertices to be added to D2 in the loop
at line 11 and D = D1 fi D2), we find that

|A| Ø
|D|

2(· + 2)�≠(G̨2r))�≠(G̨r)

By construction of H we conclude that A is (2r + 1)-scattered in G

of the claimed size.

Since a (2r + 1)-scattered set provides a lower bound for an r-
dominating set, we conclude that Algorithm 1 computes a 2(· +
2)�≠(G̨2r)�≠(G̨r)-approximation of an optimal r-dominating set.
In other words, we obtain a constant-factor approximation in graphs
of bounded expansion since the quantities �≠(G̨2r)�≠(G̨r) are
constants per Theorem 1 in bounded expansion classes and the
quantity 2(· + 2) is a constant of our choosing.

In practice one could, depending on the value of �≠(G̨r) and
�≠(G̨2r), compute the optimal value for · to minimize the approxi-
mation guarantee. However, this would necessitate the computation
of 2r augmentation, the expensive step we want to avoid. Alterna-
tively, we can choose a ‘good enough’ value for · that still guarantees
a constant-factor approximation while being easy to determine in
practice. In the context of cDBGs, we found that · := (2r)2 yields
reliably good results.

D. Computational Runtimes
See “Benchmarking” in Materials and Methods for benchmarking
methods.

The podarV data set was retrieved from the NCBI SRA using
accession SRR606249. The full build and indexing of the 103
million error-trimmed reads (10.3 Gbp in total) took approximately
23 minutes and required 12.8 GB of RAM. Loading the indices for
search required 4.3 GB of RAM and a search with a 3 Mbp genome
took approximately 32 seconds.

The HuSB1 data set was retrieved from the NCBI SRA using
accession SRR1976948. The full build and indexing of the 34 million
error-trimmed reads (8.5 Gbp in total) required approximately 217
minutes and required 24.4 GB of RAM. Loading the indices for
search required 18 GB of RAM and a search with a 3 Mbp genome
took approximately 80 seconds.

For data set complexity (number of k-mers, number of cDBG
nodes) please see Table 1.

E. spacegraphcats pipeline overview
spacegraphcats follows a series of steps when run on sequencing data,
see Figure S1. In detail, we perform the following steps.

BCALM. Use BCALM to generate a cDBG. Then convert a
BCALM unitigs.fa output (a cDBG) into spacegraphcats files.
Outputs an undirected graph, a file containing the sequences, and
a .info.csv file containing information about the contig. Also
outputs sourmash k=31, scaled=1000 signatures for both input and
output files.

spacegraphcats.cdbg.label_cdbg. Build an index that can be
used to retrieve individual reads or contigs by cDBG node ID;
produce a SQLite database for fast retrieval. Briefly, this script
creates a sqlite database with a single table, sequences, where
a query like SELECT DISTINCT sequences.offset FROM sequences
WHERE label ... can be executed to return the o�set of all se-
quences with the given label; the o�sets refer to BGZF coordinates
in the gzipped sequence collection. Here, ’label’ is the cDBG ID to
which the sequence belongs.

The script extract_reads_by_frontier_sqlite.py is a down-
stream script to extract the reads with a frontier search. Specifically:
1. walk through the contigs assembled from the cDBG; 2. build a
DBG cover using khmer tags, such that every k-mer in the DBG
is within distance d=40 of a tag; 3. label each tag with the cDBG
node ID from the contig; 4. save for later use.

spacegraphcats.catlas.catlas. The catlas is a hierarchical atlas for
querying graphs. Implements algorithms 1 and 2 (see main text).

spacegraphcats.index.index_contigs_by_kmer. Use Minimal Per-
fect Hashing (BBHash, https://github.com/rizkg/BBHash) to con-
struct a fast lookup table connecting k-mers in the cDBG to cDBG
node IDs. (BBHash reference: A. Limasset, G. Rizk, R. Chikhi, P.
Peterlongo, Fast and Scalable Minimal Perfect Hashing for Massive
Key Sets, SEA 2017.)

spacegraphcats.search.extract_nodes_by_query. Do a frontier
search, and retrieve cDBG node IDs and MinHash signature for the
retrieved contigs.

spacegraphcats.search.extract_contigs. Retrieve the unitig se-
quences for a given list of cDBG nodes. Consumes the output of
extract_nodes_by_query to get the list of nodes.

spacegraphcats.search.extract_reads. Retrieve the reads for a list
of cDBG nodes. Consumes the output of extract_nodes_by_query
to get the list of nodes, and then uses the labeled cDBG output
by .cdbg.label_cdbg to find reads that overlap with the unitigs in
those nodes.

F. Query genome accession numbers for Proteiniclas-
ticum search

See Table S1.

G. Amino Acid Identity results for Proteiniclasticum

See Table S2.

H. HuSB1 analysis pipeline overview

See Figure S2. We implemented three workflows to analyze the
plass-assembled HuSB1 query neighborhoods.

Name NCBI accession

P. ruminis CGMCC GCA_900099635.1
P. ruminis DSM GCA_000701905.1
P. ruminis ML2 GCA_900115135.1

Table S1. Accession numbers for genomes used in Proteiniclasticum
neighborhood query.

Genome A Genome B Orthologous Genes Mean AAI

P. ruminis ML2 P. ruminis shakya 2546 95.74
P. ruminis DSM P. ruminis shakya 2391 93.47

Table S2. CompareM results for Proteiniclasticum genomes. P. ru-
minis shakya is the result of assembling the reads extracted from
podarV with the neighborhood search.

11

Extract contigs: spacegraphcats.search.extract_contigs Extract reads: spacegraphcats.search.extract_reads

Search the catlas: spacegraphcats.search.extract_nodes_by_query

Index contigs and count node sizes: spacegraphcats.index.index_contigs_by_kmer Build catlas: spacegraphcats.catlas.catlas

Label reads with cDBG node membership: spacegraphcats.cdbg.label_cdbg

Use BCALM to build cDBG

Fig. S1. The steps followed by spacegraphcats when run on sequencing data.

I. Genome bin completeness improvements for HuSB1

See Table S3 and Table S4. Table S3 shows completeness metrics
for the binned genomes from the HuSB1 sample and used as queries.
Table S4 shows completeness metrics for Plass assembled query
neighborhoods after stringent read trimming at low abundance k-
mers (k-mers present fewer than 5 times were removed) of the SB1
sample reads.

J. K-mer inclusion of reads by MEGAHIT assemblies
See Table S6. We estimated the number of k-mers in each query
neighborhood that were contained in the MEGAHIT assembly of
that query neighborhood. We used sourmash compute to calculate
signatures with k-size of 31 and a scaled value of 2000. We then used
sourmash compare to estimate containment in MEGAHIT assem-
blies. The query neighborhood with the smallest containment, M.
harundinacea isolate 57_489, had the largest query neighborhood,
while the query neighborhood with the largest containment, M.
bacterium 39_7, had the smallest query neighborhood.

K. gyrA alignment
See Figure S3. The MDS plot in the left panel of figure 4 shows
distinct gyrA sequences identified in the Plass assemblies using
HMMER. To visualize the sequences within these clusters and in
other query neighborhoods, we constructed a multiple sequence
alignment. However, because many sequences assembled by Plass
were fragmented (see Results: Some query neighborhoods contain
substantial strain variation), we first clustered the sequences at 95%
similarity using CD-HIT. We then aligned the centroid sequences us-
ing MAFFT with default settings. To produce the multiple sequence
alignment visualization, we calculated an unrooted neighbor join-
ing tree using the MAFFT alignment. Then we used the function
msaplot in the R package ggtree to plot the alignment.

L. gyrA by neighborhood
See Table S5. As can be seen in the left panel of Figure 4 in the
main text, we observe many unique amino acid sequences per single
copy ortholog per query neighborhood. Although we observe many
possible traversal paths in compact De Bruijn graphs built from
reads that give rise to these sequences, we have no way to ascertain

whether we observed combinatorial complexity by assembling vari-
ants that would never be linked in nature. Therefore, we sought
to conservatively estimate the number of positions per amino acid
sequence that contained variants using MAFFT alignments. First,
we subsetted the alignment to sequences from one query neighbor-
hood. Then we identified all aligned non-gap characters for each
position in the alignment (gaps were induced in some neighborhoods
by the presence of amino acid residues in other query neighborhood
amino acid sequences). For each of these positions, we counted
the number of unique amino acid sequences per position, and the
number of times each occurred at that position. We then elimated
any variant that occurred fewer than 10 times. Lastly, we counted
the number of well-supported distinct characters. We did this for
gyrA, as well as the amino acid sequences for the other genes we
tested (see other genes). Table S5 shows that we see increased
number of gyrA sequences in many neighborhoods even with this
conservative approach.

M. Other genes
See bin and neighborhood content results for alaS in Table S8,
gyrB in Table S9, recA in Table S10, rpb2d6 in Table S11, rplB
in Table S12, and rpsC in Table S13. We selected gyrB and recA
because they were used by HuSB1 to assign taxonomy to binned
genomes. We selected other genes used as single copy orthologs by
programs like CheckM, and with longer PFAM domains.

12

Visualize with Bandage

Convert cDBG unitigs to GFA format

Assemble the cDBG with BCALM

Remove duplicate reads

Combine reads that mapped to PFAM domain

Extract reads that mapped to PFAM domain

Identify reads that mapped to contig that matched PFAM domain

Sort BAM

Index BAM

Parse hmmscan results:
identify all matches

Convert SAM to BAM

Find contigs in assembly that match
PFAM domain using hmmscan

Parse hmmscan output:
find window of domain with the largest number

of overlapping sequences
Align reads to Plass assembly with paladin

Build HMM profile from PFAM alignment with hmmbuild Deduplicate Plass assembly headers

Index the Plass assembly with paladin

Extract contigs from Plass assembly

Annotate assembly
 with KEGG GhostKOALA

Download PFAM domain alignment Truncate Plass assembly headers

Plass assembly of a query neighborhood

Calculate MDS Plot a Multiple Sequence Alignment

Convert to a matrix Align contigs with MAFFT

Calculate pairwise identity using esl-alpid Deduplicate contig names

Convert alignment to Stockholm format Parse contig names

Align contigs with MAFFT Cluster contigs with CD-HIT

Parse annotations for KEGG orthologs in Plass assembly
 annotations and not in genome bin annotations Parse annotations for nitrogenase KEGG orthologs

Download genome bin annotations Download Plass assembly annotations

Annotate amino acid sequences
 with KEGG GhostKOALA

Annotate genome bins with prokka

Download Hu et al. genome
 bins from GenBank

Fig. S2. Three workflows implemented to analyze the plass-assembled HuSB1 query neighborhoods. The first three steps, depicted in blue, were common across all workflows.
The green boxes depict the KEGG GhostKOALA annotation workflow, the results of which can be see in Figure 4. The orange boxes depict steps in common between the
clustering and variant workflows used to generate Figure 4. The red boxes depict steps used to generate the MDS clustering plot and the multiple sequence alignment (see
Figure S3). The gold boxes depict the steps of the variant workflow used to generate the assembly graphs.

13

Species Completeness (%) Redundancy (%) Strain heterogeneity (%) Unique KOs Size (bases) Number of proteins

WS6 bacterium 36_33 31.5 6.5 85.7 127 439774 423
P. bacterium 34_609 34.0 1.1 12.5 173 567617 557
P. bacterium 33_209 47.9 5.2 0 140 510490 526
M. bacterium 39_7 50.1 5.9 0 208 708389 657
P. acetatigenes isolate 50_10 56.7 3.6 66.7 506 1716233 1510
WS6 bacterium 34_10 61.9 29.5 61.3 219 1127556 1065
M. infera isolate 46_47 63.8 0.9 100 502 1225111 1170
A. bacterium 34_128 64.4 5.1 0 423 894916 785
A. thermophila isolate 46_16 67.2 16.4 0 474 1524726 1350
A. bacterium 49_20 69.6 8.3 0 380 1023183 891
M. marisnigri isolate 62_101 72.1 1.0 0 583 1592820 1742
M. bacterium 46_47 72.9 0.1 0 563 1629409 1413
B. bacterium 38_7 80.0 2.7 0 601 2137321 1697
Methanocalculus sp. 52_23 82.7 4.6 66.7 689 1973787 2074
Desulfotomaculum sp. 46_80 83.5 2.5 42.9 834 2251381 2148
S. bacterium 57_84 90.8 1.9 50 608 1255134 1277
S. bacterium 53_16 91.5 4.2 0 746 1772227 1741
Desulfotomaculum sp. 46_296 91.5 9.0 65.4 851 2328136 2265
A. bacterium 66_15 94.2 2.8 20 811 2228088 2185
C. bacterium 38_11 94.4 0.3 0 825 1882878 1744
TA06 bacterium 32_111 94.5 0 0 619 1861827 1736
Methanobacterium sp. 42_16 97.6 0 0 769 2173293 2149
M. harundinacea isolate 57_489 100 0 0 814 2382964 2377

Table S3. Completeness metrics for the HuSB1 genome bins from (35), used as queries into the SB1 metagenome. Completeness, redundancy,
and strain heterogeneity as estimated by checkM, unique KEGG orthologs predicted by GhostKOALA, bin size in bases, and number of
prokka-predicted protein sequences in the HuSB1 bins. Table is ordered by completeness. Note we refer to the checkM term “contamination”
as “redundancy” as this better describes the calculated metric.

Species Completeness (%) Redundancy (%) Strain heterogeneity (%) Unique KOs Size (bases) Number of proteins

WS6 bacterium 36_33 45.7 1675.8 87.9 140 1206915 12990
P. bacterium 34_609 39.7 637.3 74.8 239 3604616 12372
P. bacterium 33_209 46.0 516.1 92.7 160 1830403 9836
M. bacterium 39_7 30.8 1.9 20 121 1356859 1208
P. acetatigenes isolate 50_10 42.7 66.3 86.7 557 6829683 6135
WS6 bacterium 34_10 58.6 352.8 86.0 219 2840498 6549
M. infera isolate 46_47 67.0 309.8 92.6 592 4021633 11798
A. bacterium 34_128 65.5 332 58.9 446 2703261 9030
A. thermophila isolate 46_16 60.5 250 88.5 457 5080416 13780
A. bacterium 49_20 71.3 187.2 76.7 392 4166615 6040
M. marisnigri isolate 62_101 82.2 1067.9 89.9 687 11380474 49119
M. bacterium 46_47 81.0 251.3 97.5 629 5308863 15964
B. bacterium 38_7 44.0 5.3 20 508 4229976 3901
Methanocalculus sp. 52_23 89.3 443.4 87.0 741 8018167 20999
Desulfotomaculum sp. 46_80 94.8 2327.3 94.7 858 7969109 48841
S. bacterium 57_84 90.8 598.2 83.9 686 5968936 24774
S. bacterium 53_16 94.0 95.6 83.9 786 7145072 12138
Desulfotomaculum sp. 46_296 94.8 2535.0 80.4 888 17836454 48174
A. bacterium 66_15 83.6 10.6 83.7 792 10865439 8152
C. bacterium 38_11 86.7 18.2 78.4 800 4932373 4582
TA06 bacterium 32_111 95.6 45.7 88.2 626 3811703 5724
Methanobacterium sp. 42_16 92.2 31.3 90.9 782 7007709 6335
M. harundinacea isolate 57_489 98.8 355.6 89.6 841 35722445 35093

Table S4. Completeness metrics for the query neighborhoods extracted from the HuSB1 metagenome by spacegraphcats. Completeness,
redundancy, and strain heterogeneity as estimated by checkM, unique KEGG orthologs predicted by GhostKOALA, neighborhood size in
bases, and number of plass-assembled protein sequences in the query neighborhoods. Table is ordered by completeness of query bins (see
Table S3). All estimates were performed on the k-mer trimmed (k >= 5) Plass-assembled proteins except size of neighborhood in bases, for
which we used the neighborhood unitig sequences output by spacegraphcats.

14

Species gyrA (bin) gyrA (Plass)

Methanobacterium sp. 42_16 0 0
P. bacterium 34_609 0 0
Desulfotomaculum sp. 46_80 0 0
S. bacterium 57_84 0 0
B. bacterium 0 1
P. acetatigenes isolate 50_10 0 2
WS6 bacterium 34_10 0 2
M. marisnigri isolate 62_101 0 2
C. bacterium 38_11 1 1
M. infera isolate 46_47 1 1
S. bacterium 53_16 1 1
M. bacterium 46_47 1 1
TA06 bacterium 32_111 1 1
P. bacterium 33_209 1 1
A. bacterium 66_15 1 1
Methanocalculus sp. 52_23 1 2
WS6 bacterium 36_33 1 2
A. bacterium 34_128 1 2
A. thermophila isolate 46_16 1 2
M. harundinacea isolate 57_489 1 2
M. bacterium 39_7 2 0
Desulfotomaculum sp. 46_296 2 2
A. bacterium 49_20 2 3

Table S5. Bin and neighborhood gyrA protein content. gyrA count for each bin is the number of gyrA amino acid sequences that are part of
the original bin. gyrA count by Plass is the minimum number of gyrA amino acid sequences supported by at least one position with at least
10 copies of each variant, e.g., “3” indicates that there is at least one position in the multiple sequence alignment of gyrA sequences for that
neighborhood that has 3 distinct variants in 10 distinct sequences.

P.−acetatigenes−isolate−50_10

P.−acetatigenes−isolate−50_10_2

WS6−bacterium−34_10
WS6−bacterium−34_10_2

Methanocalculus−sp.−52_23

A.−bacterium−49_20

A.−bacterium−49_20_2
A.−bacterium−49_20_3
A.−bacterium−49_20_4

M.−infera−isolate−46_47

WS6−bacterium−36_33

M.−marisnigri−isolate−62_101
M.−marisnigri−isolate−62_101_2

B.−bacterium

A.−bacterium−34_128
A.−bacterium−34_128_2
M.−bacterium−46_47

Desulfotomaculum−sp.−46_296
Desulfotomaculum−sp.−46_296_2

TA06−bacterium−32_111

A.−thermophila−isolate−46_16

M.−harundinacea−isolate−57_489

Bin−M.−bacterium−39_7
Bin−M.−bacterium−39_7_2

Bin−C.−bacterium−38_11

Bin−S.−bacterium−53_16

Bin−P.−bacterium−33_209

Bin−A.−bacterium−66_15

Bin−A.−thermophila−isolate−46_16

Fig. S3. A multiple sequence alignment and neighbor joining tree of representative gyrA amino acid fragments assembled by Plass from the genome neighborhoods in HuSB1.
Protein sequences that originated from the genome bin are prepended with "Bin." All other sequences were assembled by Plass.

15

Species MEGAHIT assembly containment

M. harundinacea isolate 57_489 4.2%
Desulfotomaculum sp. 46_296 12.7%
M. marisnigri isolate 62_101 13.6%
S. bacterium 57_84 19.4%
P. bacterium 34_609 19.7%
A. bacterium 66_15 20.5%
Desulfotomaculum sp. 46_80 24.1%
P. bacterium 33_209 26.3%
S. bacterium 53_16 30.9%
A. bacterium 49_20 31.9%
Methanocalculus sp. 52_23 33.4%
M. bacterium 46_47 36.6%
P. acetatigenes isolate 50_10 36.6%
A. bacterium 34_128 36.8%
M. infera isolate 46_47 38.0%
Methanobacterium sp. 42_16 38.0%
A. thermophila isolate 46_16 38.6%
TA06 bacterium 32_111 44.1%
C. bacterium 38_11 44.4%
WS6 bacterium 34_10 53.2%
WS6 bacterium 36_33 53.8%
B. bacterium 54.2%
M. bacterium 39_7 55.7%

Table S6. Containment of neighborhood k-mer content in MEGAHIT
nucleotide assemblies.

Name PFAM accession

recA PF00154
rplB PF00181
rpsC PF00189
gyrB PF00204
gyrA PF00521
rpb2d6 PF00562
alaS PF01411

Table S7. Protein names and PFAM accessions for targeted analyses.

Species alaS (bin) alaS (Plass)

P. acetatigenes isolate 50_10 0 0
A. bacterium 49_20 0 0
P. bacterium 34_609 0 0
B. bacterium 0 0
S. bacterium 53_16 0 0
A. bacterium 34_128 0 0
M. infera isolate 46_47 0 2
M. marisnigri isolate 62_101 0 2
M. bacterium 39_7 1 0
Methanobacterium sp. 42_16 1 1
C. bacterium 38_11 1 1
S. bacterium 57_84 1 1
TA06 bacterium 32_111 1 1
P. bacterium 33_209 1 1
A. bacterium 66_15 1 1
M. harundinacea isolate 57_489 1 1
Methanocalculus sp. 52_23 1 2
WS6 bacterium 36_33 1 2
Desulfotomaculum sp. 46_80 1 2
M. bacterium 46_47 1 2
Desulfotomaculum sp. 46_296 1 2
A. thermophila isolate 46_16 2 1
WS6 bacterium 34_10 2 2

Table S8. Bin and neighborhood alaS protein content.

Species gyrB (bin) gyrB (Plass)

M. bacterium 39_7 0 0
P. acetatigenes isolate 50_10 0 0
Methanobacterium sp. 42_16 0 0
WS6 bacterium 36_33 0 0
P. bacterium 34_609 0 0
Desulfotomaculum sp. 46_80 0 0
S. bacterium 57_84 0 0
S. bacterium 53_16 0 0
A. thermophila isolate 46_16 0 2
P. bacterium 33_209 1 0
C. bacterium 38_11 1 1
M. infera isolate 46_47 1 1
M. bacterium 46_47 1 1
TA06 bacterium 32_111 1 1
A. bacterium 66_15 1 1
M. harundinacea isolate 57_489 1 1
WS6 bacterium 34_10 1 2
Methanocalculus sp. 52_23 1 2
M. marisnigri isolate 62_101 1 2
A. bacterium 34_128 1 2
A. bacterium 49_20 2 2
B. bacterium 2 2
Desulfotomaculum sp. 46_296 2 2

Table S9. Bin and neighborhood gyrB protein content.

16

Species recA (bin) recA (Plass)

M. bacterium 39_7 0 0
WS6 bacterium 34_10 0 0
Methanocalculus sp. 52_23 0 0
A. bacterium 49_20 0 0
WS6 bacterium 36_33 0 0
P. bacterium 34_609 0 0
M. marisnigri isolate 62_101 0 0
S. bacterium 53_16 0 0
M. bacterium 46_47 0 0
A. thermophila isolate 46_16 0 1
B. bacterium 1 0
P. acetatigenes isolate 50_10 1 1
Methanobacterium sp. 42_16 1 1
C. bacterium 38_11 1 1
M. infera isolate 46_47 1 1
S. bacterium 57_84 1 1
A. bacterium 34_128 1 1
TA06 bacterium 32_111 1 1
P. bacterium 33_209 1 1
A. bacterium 66_15 1 1
M. harundinacea isolate 57_489 1 1
Desulfotomaculum sp. 46_80 1 2
Desulfotomaculum sp. 46_296 1 2

Table S10. Bin and neighborhood recA protein content.

Species rpb2d6 (bin) rpb2d6 (Plass)

P. acetatigenes isolate 50_10 0 0
P. bacterium 34_609 0 0
S. bacterium 57_84 0 1
M. bacterium 46_47 0 1
C. bacterium 38_11 1 0
A. bacterium 49_20 1 0
M. bacterium 39_7 1 1
Methanobacterium sp. 42_16 1 1
Methanocalculus sp. 52_23 1 1
M. infera isolate 46_47 1 1
B. bacterium 1 1
S. bacterium 53_16 1 1
A. bacterium 34_128 1 1
TA06 bacterium 32_111 1 1
A. bacterium 66_15 1 1
A. thermophila isolate 46_16 1 1
WS6 bacterium 36_33 1 2
Desulfotomaculum sp. 46_80 1 2
M. marisnigri isolate 62_101 1 2
Desulfotomaculum sp. 46_296 1 2
P. bacterium 33_209 1 2
M. harundinacea isolate 57_489 1 2
WS6 bacterium 34_10 2 2

Table S11. Bin and neighborhood rpb2d6 protein content.

Species rplB (bin) rplB (Plass)

M. bacterium 39_7 0 0
Methanobacterium sp. 42_16 0 0
Methanocalculus sp. 52_23 0 0
WS6 bacterium 36_33 0 0
M. marisnigri isolate 62_101 0 0
M. harundinacea isolate 57_489 0 0
P. acetatigenes isolate 50_10 1 1
C. bacterium 38_11 1 1
A. bacterium 49_20 1 1
M. infera isolate 46_47 1 1
P. bacterium 34_609 1 1
Desulfotomaculum sp. 46_80 1 1
S. bacterium 57_84 1 1
B. bacterium 1 1
S. bacterium 53_16 1 1
A. bacterium 34_128 1 1
M. bacterium 46_47 1 1
Desulfotomaculum sp. 46_296 1 1
TA06 bacterium 32_111 1 1
P. bacterium 33_209 1 1
A. bacterium 66_15 1 1
A. thermophila isolate 46_16 1 1
WS6 bacterium 34_10 1 2

Table S12. Bin and neighborhood rplB protein content.

Species rpsC (bin) rpsC (Plass)

M. bacterium 39_7 0 0
P. acetatigenes isolate 50_10 0 0
WS6 bacterium 34_10 0 0
Methanobacterium sp. 42_16 0 0
Methanocalculus sp. 52_23 0 0
WS6 bacterium 36_33 0 0
M. marisnigri isolate 62_101 0 0
B. bacterium 0 0
P. bacterium 33_209 0 0
M. harundinacea isolate 57_489 0 0
M. infera isolate 46_47 0 1
C. bacterium 38_11 1 1
A. bacterium 49_20 1 1
P. bacterium 34_609 1 1
S. bacterium 57_84 1 1
S. bacterium 53_16 1 1
A. bacterium 34_128 1 1
M. bacterium 46_47 1 1
TA06 bacterium 32_111 1 1
A. bacterium 66_15 1 1
A. thermophila isolate 46_16 1 1
Desulfotomaculum sp. 46_80 1 2
Desulfotomaculum sp. 46_296 1 2

Table S13. Bin and neighborhood rpsC protein content.

17

